

Fluidized bed-in-tube solar receiver and the « Next-CSP » solar loop.

Gilles Flamant, CNRS (France)

Content

- Concept
- Main objectives and challenges addressed by the Next-CSP EU project
- Critical components
- Prototype development and implementation
- Results of the first test campaign
- Lessons learned

Concept

An upwards flow of fluidized particles is created inside the solar receiver tubes by increasing the pressure in the dispenser. A secondary aeration stabilizes the particle flow

Small size particles (<100 µm) are used.

The tubes are made of refractory alloy.

Only 1 m-long (irradiated part) tubes have been tested before the Next-CSP EU project

Positioning of the fluidized bed technology

- Particles are well mixed in fluidized beds (small thermal gradient)
- Wall-to-bed heat transfer is efficient. FB heat exchanger can be applied
- > Dust emission can be controlled because the particle loop is closed
- ➤ The concept is scalable

➤ The maximum solar flux on the tube walls is limited to ~500 kW/m² due to wall material issue

Main objectives and challenges of the Next-CSP EU project

Main objectives

To design, construct, implement and test a complete prototype-scale (>1 MW_{th}) particle CSP loop including a solar receiver, a storage, a heat exchanger and a hybrid gas turbine.

To identify the barriers to large scale development.

Main Challenges

- Particle flow regimes in dense phase inside the solar receiver tubes and associated heat transfer
- ✓ Manufacturing of the compartmented fluidized particle heat exchanger
- Integration of the components at the Themis solar tower focal area
- Control of the particle circulation in closed loop and particle conveying
- Choice of the most promising conversion cycle accounting for the technology particularities
- Solar receiver and system upscaling

Contribution of the Next-CSP Consortium members

Critical components Solar receiver

Cold mockup 3-8m-long tubes

Hot mockup 1m-long tubes

2.5 MW_{th} 3m-long solar receiver (40 tubes)

Critical components

Heat exchanger

Multi-stage compartmented fluidized bed concept with compressed air in tubes

Approximately 15 stages for 30°C ΔT ΔT = temperature difference between inlet particle and outlet air

Variation of air and particle temperature with the number of stages

Critical components Particle conveying

Issue:

- The size of a single solar receiver is limited to approximately 50 MW_{th} due to the limitation of the tube length (8 m).
- Cavity type is needed for thermal efficiency ≥ 80%
- > For a single tower, only vertival elevation of the particles must be considered
- > For a multi-tower concept, horizontal and vertical conveying are necessary

Critical components

Conversion cycle

Three options studied:

With cycle efficiency ~50%

PROMES

Prototype development

All the components are integrated atop the tower

12 m

PROMES

Prototype implementation

The complete particle loop

Heat exchanger lifted at the tower top

Pressurized air connexion between the heat exchanger and the gas turbine

Results of the first solar receiver test campaign

The solar receiver

IR image of the tube temperature (measured by a drone)

Results of the first solar receiver test campaign

Particle mass flow rate: 0,6-3,5 kg/s

P_{solar}: 550-850 kW

ΔT particle: 100-400°C

Efficiency: 40-75%

Lessons learned

- The instrumentation developed proved to be accurate and reliable
- Tuning aeration mass flow rate resulted in a precise control of particle mass flow rate
- Particle temperature increase as large as 400°C have been measured
- Solar receiver starting and shut down are very fast (10-15 minutes).
- Unexpected issue: large difference of solar flux distribution on tubes can result in particle circulation stop due to air velocity difference

Acknowledgements:

This work was funded by the European Union's Horizon 2020 research and innovation program under Grant Agreement 727762, project Next-CSP, the French "Investments for the future" ("Investissements d'Avenir") programme managed by the National Agency for Research (ANR) under contract ANR-10-EQPX-49-SOCRATE (Equipex SOCRATE) and the U.S. Department of Energy, Solar Energy Technologies Office under Award Number 34211.

www.promes.cnrs.fr

www.cnrs.fr